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Are Damage Spreading Transitions Generically in the 
Universality Class of Directed Percolation? 
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We present numerical evidence for the fact that the damage spreading transition 
in the Domany-Kinzel automaton found by Martins et al. is in the same univer- 
sality class as directed percolation. We conjecture that also other damage 
spreading transitions should be in this universality class, unless they coincide 
with other transitions (as in the Ising model with Glauber dynamics) and 
.provided the probability for a locally damaged state to become healed is not 
zero. 
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Among  all critical phenomena ,  directed percola t ion  ( D P )  is maybe  that  
which has been associated with the widest variety of  phenomena.  

Firs t  there are in terpre ta t ions  where the preferred direct ion is a spat ial  
direction. This was of  course p roposed  to apply  to mater ia l  and charge 
t ranspor t  in d isordered  media  under  the influences of  external  forces. Also, 
it should model  the p ropaga t i on  of  epidemics and forst fires under  some 
direct ional  bias, e.g., s t rong wind. 

More  interesting are in terpre ta t ions  where the preferred direct ion is 
time. Here, the pr imary  in terpre ta t ion  is as an epidemic without  immuniza-  
tion, the so-called "contact  proces '"1~ or  the "simple epidemic. ''c2) 

But these are by no means  all the possible applicat ions.  A very early 
appl ica t ion  (even if it t ook  ra ther  long until  it was unders tood  as such c3'4) 
was to "reggeon field theory,"  a theory for ul trarelat ivist ic  part icle 
collisions popu la r  in the 1970sJ 5) Here,  the preferred direct ion is that  of  
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"rapidity," while the directions transverse to it are provided by the impact 
parameter plane. This connection is interesting since it was through it that 
first precise estimates of critical exponents and amplitudes were obtained 
for DP. (5) 

Another realization of the DP transition occurs in simple models of 
heterogeneous catalysis. The first such model was proposed by Ziff et al. (6) 
(ZGB). The simulations by these and subsequent authors indicated that 
this model was in a different universality class, and it was only after some 
controversy that it became generally accepted to be in the DP universality 
class. (7~ Similar models have been invented again and again. ~s'9) Repeatedly 
they have been claimed to be in different universality classes, and 
repeatedly these claims have been refuted, t1~ 

In refs. 13 and 14 it was proposed that the universality class of DP 
contains all continuous transitions from a "dead" or "absorbing" state to 
an "active" one with a single scalar order parameter, provided the dead 
state is not degenerate [and provided some technical points are fulfilled: 
short-range interactions both in space and time, nonvanishing probability 
for any active state to die locally, translational invariance (absence of 
"frozen" ramdomness), and absence of multicritical points ]. It seems fair to 
say that there is now ample evidence for this proposal. It predicts, e.g., 
immediately that the ZGB model is in this universality class. A rather sub- 
tle question is whether also chaotic systems where the random noise is 
replaced by deterministic chaos are in the same class, ~15"16) 

As far as I am aware of, no model with nonfluctuating absorbing state 
and a multicomponent order parameter has ever been studied in the 
literature. Notice that this has to be distinguished from models for which 
some mean-field approximation has a multicomponent order parameter. 
Such models are quite common (e.g., the Bethe-Peierls approximation of 
the Ising model, or the mean-field approximation of ZGB), and it was 
just the study of such a model which had led to the conjecture in ref. 14. 
A supposed generalization (~7~ of the above conjecture is thus already fully 
contained in the original conjecture of ref. 14. 

A more interesting question is what happens if the dead state is 
degenerate. Counterexamples with twofold degeneracy were studied in refs. 
18-20. They involve conservation laws whith prevent some active states 
from dying, making it thus immediately clear that any transit ion~if  it 
occurs at all--has to be in a different universality class. 

But the main open problem is whether models can be generically in 
the DP class if they have an absorbing state with positive entropy. Here we 
have to distinguish clearly between two different situations. 

In the first class of models, the absorbing states are nonergodic with 
the number of ergodic components growing exponentially with system size. 
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In the extreme case, all absorbing (micro-)states can be completely frozen. 
Examples are the dimer reaction model of refs. 21 and 22 and the dimer-  
trimer model. 123'21) Here, the absorbing states are indeed "dead" in the 
sense that they are strictly frozen in the configuration which happened to 
have been reached after the last active sites died out. But simulations 
showed that there were no long-range correlations in these dead states, and 
they were characterized by unique statistical properties. The original studies 
of some such models (23,241 placed them into separate universality classes. 
But as we pointed out already, systematic errors are often underestimated. 
More recent simulations found agreement with DP in all cases, (25'2~-22"261 
provided the initial state had in dead regions the same statistical properties 
as the states left over after activities died out. This is intuitively plausible, 
as the absorbing state is essentially unique on a coarse scale, and only 
coarse-grained properties should influence critical behavior. 

In contrast to this are models where there is a single active ergodic 
component which has, however, positive entropy and fluctuating dynamics. 2 
An example for this is the "threshold transfer process" of ref. 22. For obvious 
reasons, we prefer not to call the absorbing state dead in this case. Assume 
furthermore that the evolution of the absorbing state is mixing and does not 
lead to long-range correlations within this state (long correlations should be 
entirely due to patches of "active" states). For such models it seems even 
more natural than for the above class that any continuous transitions should 
in the DP class. For the threshold transfer process this was indeed verified (22~ 
(as explained below, a violation of universality for "dynamic" properties seen 
in ref. 22 should not be considered as a contradiction to the above). 

In this note we propose that there is a rather large and well-studied 
class of transitions which are exactly of the latter type, and which are thus 
all in the DP class. These are so-called "damaging" transitions. In these 
models one considers two replicas of a stochastic spin system, and lets 
them evolve with identical realizations of the stochastic noise. The initial 
conditions can be either completely independent, or one can start with two 
states which are identical except for a single spin. This single flip is con- 
sidered as a "damage," and the question is whether this damage will finally 
heal, so that both replicas converge toward identical s tates--or  whether it 
will spread. If the two states are uncorrelated initially, the transition is 
between a situation where their rescaled Hamming distance (=densi ty  of 
damaged sites) stays finite and one where this distance goes to zero. 

-" In the model  studied below we encounter  a slight general izat ion where we have indeed two 
active ergodic components ,  but only one of them is realized for nearly all initial  condit ions.  
This gives the same behavior ,  provided some caveats  are taken into account  as discussed 
below. 

822/79/I-2-2 
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More precisely, we propose that such damaging transitions are in the 
D P  class if they do not  coincide with another  transition (since then there 
would be long-range correlations in the absorbing state), and if there is no 
frozen randomness. The former applies to the 2D Ising model with Glauber  
dynamics, since there the damaging transition coincides with the ordinary 
critical point  (27) (the situation is less clear in three dimensions(2S'29)). 
Frozen randomness is involved in damage in spin glasses ~3~ and in the 
extensive studies of  damage in Kauffman models. ~33-3s) This should be in 
the same universality class as D P  with frozen randomness,  t36) but  for the 
Kauffman models there is a further complication: there damage typically 
does not  heal completely, whence the "dead" state is not  absorbing in our  
sense. 3 We might mention that it was already pointed out that  damage in 
the annealed Kaufmann model is in the D P  class, ~34) but this is much more 
trivial than our  present claim. The annealed model can be mapped  exactly 
onto DP,  which is not the case in general. 

We support  our claim with simulations of  damage in the D o m a n y -  
Kinzel cellular au tomaton  (CA). t38) This is a CA with one space and one 
time dimension, and with two states per site: s; = 0, 1. Dynamics is defined 
by the following rule involving two real parameters Pt and P2 (we make a 
trivial modification which slightly simplifies the simulation): 

(i) I f  st = 0 and si+ l = 0, then s~ = 0. 

(ii) If  s ; X O R s i §  then s ~ = l  with probability Pl and s i = 0  
with probability 1 - p~. 

(iii) If  s; A N D  s~+ ~ = 1, then s~ = 1 with probability Pz and s '  i = 0 
with probability 1 - P2. 

For  pl  < 1/2 and any Pz < 1, it is obvious that any state will converge 
toward the dead state ...000 .... Actually, this state is an at tractor for all 
values of  p]  below a critical curve P~(P2). This curve is indicated as curve 
cg in Fig. 1. To the right of  cg, one has an active state (the dead state still 
is stationary, but  it no longer attracts all initial states) with p = (s~) > 0. 

The above conjecture suggests that  the transition all along cg is in 
the D P  class, except at its upper limit point  (p~, P 2 ) =  (1/2, 1), where the 
model is a discrete-time variant of  the exactly solvable voter model ~) 
("compact  directed percolation"(39)). This is supported by all numerical 
evidence ~4~ (except for a renormalization group analysis and Monte  
Carlo simulations presented in ref. 42; in high-precision Monte  Carlo 

3 After submission of this paper, it was pointed out to me that Obukhov and Stauffer (37) had 
already conjectured that damage spreading in Kauffman models might be in the DP class. 
But they also pointed out the problem that damage in these models typically does not heal 
even if it does not spread. 
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Fig. 1. Part of the phase diagram for the Domany-Kinzel CA. Curve ~r separates dead (left) 
from active (fight) phases. Curve ~ (which joins ~ at its lower end point, but runs otherwise 
entirely in the active phase) separates a healing phase (left) from a chaotic phase (fight) were 
any damage has nonzero probability not to heal. Here the damage is implemented according 
to the first variant described in the text. With the second variant, ~ would be somewhat 
further to the left. The transition curves were determined by runs with single active/damaged 
initial sites, and demanding that the exponent v/ [see Eq. (4)] has the value of DP. The 
precision of the curves is everywhere better than the thickness of the lines. Quantitatively, the 
phase diagram agrees with data from ref. 44, but not with the diagram given in ref. 43. It also 
deviates significantly from that in ref. 48. 

s imula t ions  (12) we cou ld  no t  conf i rm these  claims).  In  par t icu lar ,  b o n d  and  

site D P  c o r r e s p o n d  to P2 = (2 - Pl)Pl a n d  P l  = P2, respect ively.  
I t  was found  recent ly  in ref. 43 tha t  the  ac t ive  phase  can  be  fur ther  

subd iv ided  in to  a phase  in which  d a m a g e  does  n o t  sp read  ( "hea l ing  act ive  

phase" )  a n d  one  where  it does  ( "chao t i c" ) .  The  t rans i t ion  be tween  these 

two  phases  is ind ica ted  by cu rve  ~ in Fig. 1. It  co r r e sponds  to p~ = pa(p2  ), 
where  pal>p~ for all  p 2 > 0 ,  whi le  pa (0 )=p~(0) . (44)  Indeed ,  one  can  

cons ide r  two  different va r i an t s  o f  the  d a m a g e  process:  in the first one  uses 

different  r a n d o m  n u m b e r s  w h e n  app ly ing  rules (ii) and  (iii) above ,  a n d  in 

the second  one  uses the same.  C u r v e  N is c o m p u t e d  wi th  the second  

var ian t .  T h e  first v a r i a n t  w o u l d  give a different  cu rve  sl ightly to the  left 
o f  ~ .4  

4 The very existence of these two variants shows that it is misleading to speak of different 
phases in the Domany-Kinzel CA, as done in ref. 43. Instead these are different phases for 
very specific algorithms for simulating pairs of such automata. 
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As pointed out in ref. 41, one can describe a pair of replicas by an 
extended phase space with four states per site: (00), (01), (10), and (11). 
Damage spreading corresponds then to the (directed) percolation of states 
(10) and (01), while any state with (00) and (11) only is healed. Since 
pal> p~ for all P2 >0,  the healing state has positive entropy at the damage 
spreading transition, and it does not immediately follow from the conjec- 
ture of refs. 13 and 14 that this transition is in the DP universality class. 

To check our conjecture that it is in this class nevertheless, we per- 
formed extensive simulations at p~ = 1, where both variants coincide. Less 
extensive runs were make at several other values of p~, where we studied 
both variants. 

We worked on lattices of length L with periodic boundary conditions. 
To speed up our simulations, we simulated 64 lattices simultaneously (we 
worked on machines with 64-bit words) by assigning the kth bit of the ith 
word in an integer array of length L to the spin s~ k) in the kth lattice. The 
dynamics is then easily implemented by standard bit operations. 

To measure the degree of damage in simulations which start with 
independent random initial configurations (thus with half of the sites 
damaged initially), we count the number of "1" bits in each word. If this 
number is ni for the ith word, then the number of pairs of lattices which 
are damaged at site i is ( 6 4 - n 3 n  ~. The sum of Hamming distances 
between all 64 x 63/2 = 2016 pairs of lattices is thus 

L 

d= ~ (64-n,)nl (1) 
i = 1  

For simulations with initial single-site damage, this is not possible since we 
cannot build an initial state in which each pair is damaged at only one site. 
Instead, we introduced single-site damage only between successive bits, i.e., 
we initially damaged the (2k+  1)th bit ( k = 0 ,  1, 2, ..., 31) in 32 different 
words, and counted how often the (2k + 1)th bit differed from the (2k)th 
one. 

Results from runs with random and independent initial states on 
lattices of size L = 222 are presented in Fig. 2. There we show the total 
damage as function of time for Pl = 1 and several values of P2- At the 
critical point we expect an algebraic decay, corresponding to a straight line 
in Fig. 2. If the transition is in the DP class, this decay is governed by an 
exponent 3 = 0.1596 + 0 . 0 0 0 1 .  ~45~7) We see indeed a nearly perfect straight 
line for P2 ~ 0.3122. Together with the data described below, this gives our 
estimate 

p~= 0.31215 + 0.00004 for p l - - 1  (2) 
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Fig. 2. Log-log plot of the total number of damaged sites in 2016 pairs of lattices, with 2 22 

sites each. For all curves Pl = 1, while P2 ranges from 0.3086 to 0.3155 (from top to bottom). 
Initial configurations were random. 

and the exponent  extracted from it (0 .157-t-0.002)  is in good  agreement with 
DP.  Similar results (a l though somewhat  less precise) were obtained for both  
variants of  the damage  spreading at several values  of  P l .  For p 1 = 0 . 8 5 ,  
e.g., they gave p d = 0 . 1 9 5 7 - 1 - 0 . 0 0 0 2  (variant 1), resp. p a = 0 . 1 4 0 0 - 1 - 0 . 0 0 0 2  
(variant 2). In all cases ~ was compat ib le  with the D P  value. 

d a m a g e  s p r e a d i n g  i n  D o m a n y - K i n z e l  C A .  P l  = 1. 
�9 . , . . .  . .  . .. �9 . 

p,= o.3o85 - -  . i  . ' ; -  
0 2 = 0 . 3 1 0 1  . . . .  , . , ' . .  . 

02 = 0 . 3  0 . . . . .  " 
02  = 0 . 3 1 1 6  ," , , ~ '  
0 2 = 0 3 1 1 9  . . . .  ~ , , ,  , . 7 '  
0 2 = 0 , 3 1 2 2  - . / , , ' ~ , ' ~ "  
02  = 0 . 3 1 2 5  . . . . .  ~ , ' : ' ;  .*'~ 
P2 = 0 .3131  . . . . .  / . ' . ~ t ? ~ : : ' " "  . . . .  

P2 = 0 , 3 1 4 0  . . . .  ~ . - : . ~ : " ~ ! :  " 

f 

Fig. 3. Log-log plot of the total number of damaged sites in runs where each pair of lattices 
was initially damaged at a single site. Again Pl = 1. The values of p2 are the same as in Fig. 2. 
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It is well known from studies of DP that the exponent fl defined by 

d ~  (p2a- p2) p (3) 

is not easily measured precisely due to the very long transients close to the 
critical point (i.e., due to the smallness of 6) and due to finite-size effects. 
The latter are absent in our simulations due to the very large lattice size. 
Nevertheless, extrapolating the data from Fig. 2 to t---, ~ gave only a 
crude estimate fl---0.272 + 0.006, which is, however, in perfect agreement 
with DP, where fl = 0.2766 _ 0.0003. t45-47) 

In order to measure an independent critical exponent, we made in 
addition runs with initial single-site damage on much smaller lattices 
(L~<7000) and for shorter times (t ~< 40,000). Apart from the damaged 
sites, the initial configurations were randomly chosen active states (they 
were set to the final configuration of the first lattice in the preceding run 
by setting the ith word to 0 ifs~l)=0,  and to - 1  i f s l ~ =  1). From univer- 
sality with DP we expect that at the critical point 

d , , ~ t  ~ , r/= 0.314 -+ 0.001 (4) 

which is nicely fulfilled. Off the critical point we should have 

( d )  oc t -~ck((pa2 - P2) tl/~ll) (full initial damage) (5) 

and 

( d )  oc t~r  - P2) t]/v") (single-site initial damage) (6) 

with universal scaling functions ~b(za) and ~O(z) which are regular at z = 0, 
and with vii = 1.7336_+0.0005. To see that our data are fully consistent 
with this, in Fig. 4 we plotted d / t  ~ against d (P2--P2) tl/vll for both types of 
initial conditions. We see indeed a perfect data collapse as predicted by the 
above ansatz. We just mention that similar results (again with somewhat 
smaller statistics and with significantly larger corrections to scaling) were 
obtained for several other values of p~, and allowed us to locate curve 
in Fig. 1 with high precision. 

In conclusion, we have given numerical evidence that the damage 
spreading transition in the Domany-Kinzel CA is in the DP universality 
class, although the undamaged state has positive entropy. We expect this 
to be true in general, not only for the Domany-Kinzel CA. 

Of course, we have to set initial conditions such that we are not con- 
fined to atypical states carrying zero measure. In the present case, such 
atypical behavior would, e.g., result if we would start with one of the 
configurations being dead (all si = 0) or nearly dead (s; 4:0 only in a finite 
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Fig. 4. The same data as in (A) Fig. 2 and (B) Fig. 3, but plotted such that all data should 
collapse onto a single curves if Eqs. (5) and (6) are correct. Only data for t > 4 0  are plotted 
in panel (A), and for t > 10 in panel (B), in order to reduce finite-time corrections. 

region). In the latter case, we would then have a linear increase of d instead 
of (4). We believe that not taking into account this caveat is the reason 
why only partial universality with D P  was observed for the threshold 
transfer process in ref. 22. There, "dynamical" simulations were done where 
the active region was bounded and expanding with time. Outside this 
region the configurations were not allowed to evolve, but were (artificially) 
kept in atypical states. It seems trivial that this modification of  the model 
can lead to violations of universality. 
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Unfortunately, our conjecture does not immediately apply to the case 
of Kauffman automata,  ~33) where damage spreading had been studied quite 
intensively. r First of all, these models involve frozen randomness and 
should thus-- i f  at al l --be compared to DP  in disordered media. Second, 
healing is not perfect in Kauffman models even in the phase in which 
damage does not spread. In this phase a finite damage has a nonzero 
probability to persist forever, and the healed state is not absorbing in our 
sense. It would be most interesting to study modified Kauffman models 
where such healing takes place (e.g., stochastic versions--apart  from the 
randomness in the attribution of local rules, Kauffman models are strictly 
deterministic), and to compare them with DP  in disordered media. 

We have added one more item to the already long list of possible 
physical realizations of the DP transition. It is vexing that in spite of this 
ubiquity in models ,  and in spite of its conceptual simplicity (DP is by far 
the simplest critical phenomenon to study on a computer and to explain to 
a high school student), there have not been reported any experiments 
where the critical behavior of DP was observed even crudely! 5 Maybe the 
present realization can lead to such an observation, 

On the more practical side, we have introduced a new and very 
efficient method for simulating damage spreading which might find applica- 
tions in similar problems. 
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